

UL 746B

Rynite® 940 BK505

THERMOPLASTIC POLYESTER RESIN

Common features of Rynite® thermoplastic polyester include mechanical and physical properties such as excellent balance of strength and stiffness, dimensional stability, creep resistance, heat resistance, high surface gloss and good inherent electrical properties at elevated temperature. It can be processed over a broad temperature range and has excellent flow properties.

Rynite® thermoplastic polyester resins are typically used in demanding applications in the automotive, electrical and electronics, appliances where they successfully replace metals and thermosets, as well as other thermoplastic polymers.

Rynite® 940 BK505 is a 40% mica/glass reinforced modified polyethylene terephthalate resin with low warpage, high stiffness and strength, and excellent electrical properties.

Product information			
Resin Identification	PET-(GF+MD)4		ISO 1043
Part Marking Code	>PET-(GF+MD)4	0<	ISO 11469
Rheological properties			
Moulding shrinkage, parallel Moulding shrinkage, normal	0.2 0.7		ISO 294-4, 2577 ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus Tensile stress at break, 5mm/min Tensile strain at break, 5mm/min Flexural modulus Charpy impact strength, 23°C Charpy impact strength, -40°C Charpy notched impact strength, 23°C Charpy notched impact strength, -40°C Poisson's ratio	1.8 13000 35 35 7	MPa %	ISO 527-1/-2 ISO 527-1/-2 ISO 527-1/-2 ISO 178 ISO 179/1eU ISO 179/1eU ISO 179/1eA ISO 179/1eA
Thermal properties			
Melting temperature, 10°C/min Temperature of deflection under load, 1.8 MPa Temperature of deflection under load, 0.45 MPa Coeff. of linear therm. expansion, parallel, -40-23°C Coefficient of linear thermal expansion		°C	ISO 11357-1/-3 ISO 75-1/-2 ISO 75-1/-2 ISO 11359-1/-2 ISO 11359-1/-2
(CLTE), parallel Coeff. of linear therm. expansion, parallel, 55-160°C Coeff. of linear therm. expansion, normal, -40-23°C Coefficient of linear thermal expansion (CLTE),	54	E-6/K E-6/K E-6/K	ISO 11359-1/-2 ISO 11359-1/-2 ISO 11359-1/-2
normal Coeff. of linear therm. expansion, normal, 55-160°C RTI, electrical, 0.75mm RTI, impact, 0.75mm	75	E-6/K °C °C	ISO 11359-1/-2 UL 746B UL 746B

Printed: 2025-05-30 Page: 1 of 3

75 °C

Revised: 2025-04-22 Source: Celanese Materials Database

RTI, strength, 0.75mm

Rynite® 940 BK505

THERMOPLASTIC POLYESTER RESIN

Flammability

Burning Behav. at thickness h	НВ	class	IEC 60695-11-10
Thickness tested	0.75	mm	IEC 60695-11-10
UL recognition	yes		UL 94
Glow Wire Flammability Index, 3.0mm	925	°C	IEC 60695-2-12
Glow Wire Ignition Temperature, 3.0mm	900	°C	IEC 60695-2-13
FMVSS Class	В		ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	<80	mm/min	ISO 3795 (FMVSS 302)

Electrical properties

4.2	IEC 62631-2-1
3.9	IEC 62631-2-1
70 E-4	IEC 62631-2-1
146 E-4	IEC 62631-2-1
1E13 Ohm.m	IEC 62631-3-1
1E14 Ohm	IEC 62631-3-2
33 kV/mm	IEC 60243-1
250	IEC 60112
	3.9 70 E-4 146 E-4 1E13 Ohm.m 1E14 Ohm 33 kV/mm

Physical/Other properties

Density	1640 kg/r	n ³ ISO 1183
Density	TOTO RG/I	11 100 1100

Injection

Drying Recommended	yes	
Drying Temperature	120	°C
Drying Time, Dehumidified Dryer	4 - 6	
Processing Moisture Content	≤0.02 ^[1]	%
Melt Temperature Optimum	290	°C
Min. melt temperature	280	°C
Max. melt temperature	300	°C
Screw tangential speed	≤0.2	m/s
Mold Temperature Optimum	110	°C
Min. mould temperature		°C
Max. mould temperature	125 ^[2]	°C
Hold pressure range	≥80	MPa
Hold pressure time	4	s/mm
Back pressure	As low as	MPa
	possible	
Ejection temperature	202	°C

[1]: At levels above 0.02%, strength and toughness will decrease, even though parts may not exhibit surface defects.

[2]: (6mm - 1mm thickness)

Characteristics

Processing Injection Moulding

Pellets Delivery form

Additives Release agent

Printed: 2025-05-30 Page: 2 of 3

Revised: 2025-04-22 Source: Celanese Materials Database

Rynite® 940 BK505

Special characteristics Low Warpage

Automotive

OEM STANDARD

Stellantis - Chrysler MS.50103 / CPN-3080

ADDITIONAL INFORMATION

Black

Printed: 2025-05-30 Page: 3 of 3

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.